

Permit Number Facility Name Parameter What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

Tyson Foods, In	ICGlen Allen
TDS (Well 3)	

	Backgrou	ind Maria and		
	Juongrou	nd Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
	1 39			· /(7/]
	2 60	484	10.202	164.443
	3 86	489	317.049	61.208
	4 31	534	1918.955	1382.090
5		497	125.308	0.031
6		520	432.885	537.149
7	-	498	317.049	1.384
8		514	33.708	295.031
9		461	794.908	1283.325
10		408	67.144	7889.619
11		504	139.379	51.502
12	2.5	508	3.261	124.913
13		523	249.826	685.208
14		514	1036.461	295.031
15	10 64	480	1036.461	283.031
16		518	475.497	448.443
17	32.3 10	550	97.894	2827.737
18	10	444	1036.461	2790.325
19			0.000	0.000
20			0.000	0.000
20			0.000	0.000
$X_b(ave) = 4$	10.104	W 2		0.000
15(ave) = 2	12.194	$X_{m}(ave) = 496.824$		
T _b =				
1.00	1.746	(from lookup table)		
$T_m =$	1.746			
$s_b^2 =$				
	505.778	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{b2}-X_b(ave))^2$	$(X_{bn}-X_{b}(ave))^{2}V(n_{b}-1)$	
$s_m^2 =$	1195.029	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2$	$(X_{mn}-X_{m}(ave))^{2}/(n-1)$	
_				
T _{star} =	45.452	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_m^2)$	² /n.)	
			U · · · · · · · · · · · · · · · · · · ·	
$W_b =$	29.752	$= s_b^2/n_b$		
$W_m =$	70.296	$= s_m^2/n_m$		
T _{comp} =	1.746	- //A/ .T . /A/		
	1.740	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$		

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ?

What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen TKN (Well 2)

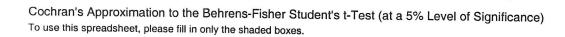
17

17

				17
	Backgro	ound Monitored Site		$[X_m-X_m(ave)]^2$
	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5 1.6 1.8 5 2.2 2 1.7 7 1.9 5 2.2 5 2.1 1.5 1.7	0.033 0.000 0.000 0.079 0.036 0.000	0.040 0.000 0.160 0.010 0.010 0.090 0.090 0.090 0.010 0.000 1.440 0.160 0.490 0.360 0.040 4.840 0.160 0.000 0.000 0.000
$T_b = T_m =$	1.746 1.746	(from lookup table)		
$s_b^2 = s_m^2 =$	0.010 0.504	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2$ = $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2]$	$(X_{bn}-X_b(ave))^2]/(n_b-1)$ $(X_{mn}-X_m(ave))^2]/(n_m-1)$	
T _{star} =	7.593	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m$		
$W_b =$	0.001	$= s_b^2/n_b$		
W _m =	0.030	$= s_m^2/n_m$		
T _{comp} =	1.746	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$		

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number


Facility Name Parameter What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen TKN (Well 4)

17 17

				3
Ва	ackground	Monitored Site	$[X_b-X_b(ave)]^2$	[X _m -X _m (ave)]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.3 0.5 0.5 0.2 0.67 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	11.8 11.3 14.9 12.3 11.6 11.5 10.1 10.5 11.4 10.8 10.5 8.3 8.7 7.7 11.4 10.1 5.6	0.033 0.000 0.000 0.000 0.079 0.036 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.690 0.640 19.360 3.240 1.210 1.000 0.160 0.000 0.810 0.090 0.000 4.840 3.240 7.840 0.810 0.160 24.010 0.000 0.000
			1.5-5	0.000

$$\begin{split} X_b(ave) &= 0.481 & X_m(ave) = 10.500 \\ T_b &= 1.746 & (from lookup table) \\ T_m &= 1.746 & \\ S_b^2 &= 0.010 & = [(X_{b1} - X_b(ave))^2 + (X_{b2} - X_b(ave))^2 ...(X_{bn} - X_b(ave))^2]/(n_b - 1) \\ S_m^2 &= 4.319 & = [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2 ...(X_{mn} - X_m(ave))^2]/(n_m - 1) \\ T_{star} &= 19.857 & = [X_m(ave) - X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b) \\ W_b &= 0.001 & = s_b^2/n_b \\ W_m &= 0.254 & = s_m^2/n_m \\ T_{comp} &= 1.746 & = (W_b * T_b + W_m * T_m)/(W_b + W_m) \end{split}$$

Permit Number

Facility Name

Parameter

What is the number of observations in the set of monitoring data (n_m)?

VA0004031

Tyson Foods, Inc.-Glen Allen
Copper (Well 3)

17

What is the number of observations in the set of monitoring data (n_m)?

17

	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1	0.002			
2		0.002	0.000	0.000
	0.002	0.002	0.000	0.000
3	0.002	0.002	0.000	0.000
4 5	0.002	0.002	0.000	0.000
6	0.02	0.02	0.000	0.000
7	0.02	0.02	0.000	0.000
8	0.02	0.02	0.000	0.000
	0.02	0.03	0.000	0.000
9	0.02	0.02	0.000	0.000
10	0.02	0.02	0.000	0.000
11	0.02	0.02	0.000	0.000
12	0.02	0.02	0.000	0.000
13	0.02	0.02	0.000	0.000
14	0.02	0.03	0.000	0.000
15	0.02	0.02	0.000	0.000
16	0.02	0.02	0.000	0.000
17	0.02	0.02	0.000	0.000
18			0.000	0.000
19			0.000	0.000
20			0.000	0.000
$X_b(ave) = 0$	016	$X_{m}(ave) = 0.017$		
Λ ₀ (ανο) = 0	.010	$\Lambda_{\rm m}(ave) = 0.017$		
$T_b =$	1.746	(from lookup table)		
T _m =	1.746	(nom lookup table)		
· m —	1.740			
$s_b^2 =$	0.000	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bi})^2$	V />21//	
$s_m^2 =$	0.000	$-[(X_{b1}-X_{b}(ave))] + (X_{b2}-X_{b}(ave))](X_{bi}$	$_{n}$ - $X_{b}(ave))^{-}]/(n_{b}-1)$	
om –	0.000	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_m)^2$	$(x_{mn}-X_m(ave))^2]/(n_m-1)$	
T _{star} =	0.402	- [V (2002) V (2002)]/- 1/2 2/2 2		
star —	0.402	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2)$	/n _b)	
$W_b =$	0.000	$= s_b^2/n_b$		
$W_m =$				
vv _m =	0.000	$= s_m^2/n_m$		
_				
$T_{comp} =$	1.746	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$		

There is no significant difference between the monitoring data and the background data

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number Facility Name Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Sodium (Well 2)

17 17

	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1	3.58	51.76	2.846	78.146
2	3.5	49.8	3.122	47.334
3	2.3	50.18	8.803	52.708
4	4.86	46.7	0.166	14.288
5	4	47	1.605	16.646
6	3.9	47	1.869	16.646
7	26	2	429.855	1674.446
8	3	46	5.140	9.486
9	3	49	5.140	36.966
10	4	47	1.605	16.646
11	5	44	0.071	1.166
12	4	42	1.605	0.846
13	4	44	1.605	1.166
14	5	42	0.071	0.846
15	5	39	0.071	15.366
16	3.9	42.1	1.869	0.672
17	4.5	40.1	0.588	7.952
18			0.000	0.000
19			0.000	0.000
20			0.000	0.000

$$\begin{split} X_b(ave) &= 5.267 & X_m(ave) = 42.920 \\ T_b &= 1.746 & (from lookup table) \\ T_m &= 1.746 & \\ S_b{}^2 &= 29.127 & = [(X_{b1}\text{-}X_b(ave))^2 + (X_{b2}\text{-}X_b(ave))^2 ...(X_{bn}\text{-}X_b(ave))^2]/(n_b\text{-}1) \\ S_m{}^2 &= 124.458 & = [(X_{m1}\text{-}X_m(ave))^2 + (X_{m2}\text{-}X_m(ave))^2 ...(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1) \\ T_{\text{star}} &= 12.527 & = [X_m(ave)\text{-}X_b(ave)]/\text{sqrt}(s_m{}^2/n_m + s_b{}^2/n_b) \\ W_b &= 1.713 & = s_b{}^2/n_b \\ W_m &= 7.321 & = s_m{}^2/n_m \\ \end{split}$$

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ?

What is the number of observations in the set of monitoring data (n_m) ?

VA0004031

Tyson Foods, Inc.-Glen Allen Sodium (Well 4)

17

17

E	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1	3.58	41.42	2.846	22.501
2	3.5	34.8	3.122	3.521
3	2.3	40.04	8.803	11.313
4	4.86	40.84	0.166	17.335
5	4	40	1.605	11.046
6	3.9	34	1.869	7.163
7	26	33	429.855	13.516
8	3	33	5.140	13.516
9	3	35	5.140	2.811
10	4	38	1.605	1.752
11	5	37	0.071	0.105
12	4	34	1.605	7.163
13	4	39	1.605	5.399
14	5	35	0.071	2.811
15	5	35	0.071	2.811
16	3.9	37.9	1.869	1.497
17	4.5	35.5	0.588	1.384
18			0.000	0.000
19			0.000	0.000
20			0.000	0.000

$$\begin{split} X_b(ave) &= 5.267 & X_m(ave) = 36.676 \\ T_b &= 1.746 & (from lookup table) \\ T_m &= 1.746 & \\ s_b{}^2 &= 29.127 & = [(X_{b1}\text{-}X_b(ave))^2 + (X_{b2}\text{-}X_b(ave))^2 ...(X_{bn}\text{-}X_b(ave))^2]/(n_b\text{-}1) \\ s_m{}^2 &= 7.853 & = [(X_{m1}\text{-}X_m(ave))^2 + (X_{m2}\text{-}X_m(ave))^2 ...(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1) \\ T_{\text{star}} &= 21.296 & = [X_m(ave)\text{-}X_b(ave)]/\text{sqrt}(s_m{}^2/n_m + s_b{}^2/n_b) \\ W_b &= 1.713 & = s_b{}^2/n_b \\ W_m &= 0.462 & = s_m{}^2/n_m \\ \end{split}$$

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number Facility Name Parameter What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Zinc (Well 3) 17

E	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1	0.02	0.02	0.000	0.000
2	0.05	0.07	0.001	0.003
3	0.04	0.02	0.000	0.000
4	0.02	0.02	0.000	0.000
5	0.01	0.02	0.000	0.000
6	0.02	0.01	0.000	0.000
7	0.03	0.02	0.000	0.000
8	0.01	0.02	0.000	0.000
9	0.01	0.02	0.000	0.000
10	0.01	0.02	0.000	0.000
11	0.01	0.01	0.000	0.000
12	0.04	0.01	0.000	0.000
13	0.01	0.01	0.000	0.000
14	0.01	0.02	0.000	0.000
15	0.01	0.01	0.000	0.000
16	0.02	0.01	0.000	0.000
17	0.01	0.01	0.000	0.000
18			0.000	0.000
19			0.000	0.000
20			0.000	0.000
$X_b(ave) = 0$.019	$X_{m}(ave) = 0.019$		
$T_b =$	1.746	(from lookup table)		
$T_m =$	1.746	()		
$s_b^2 =$	0.000	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_b)^2$		
$s_m^2 =$	0.000	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]$	$(x_{mn}-X_m(ave))^2]/(n_m-1)$	
T _{star} =	-0.127	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2)$	² /n _b)	
$W_b =$	0.000	$= s_b^2/n_b$		
$W_m =$	0.000	$= s_m^2/n_m$	9	

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

 $= (\mathsf{W_b} {\star} \mathsf{T_b} + \mathsf{W_m} {\star} \mathsf{T_m})/(\mathsf{W_b} + \mathsf{W_m})$

1.746

Tyson Foods, Inc. - Glen Allen, (VA0004031) Ammonia-N (mg/l)

Parameter	NH3
Monitoring	Monitoring
Well	Well
1	2
Up	Down
Gradient	Gradient
Data	Data
0.1	1.5
0.1	1.2
0.1	1.8
0.1	1.7
0.05	3.35
0.18	116
0.6	1.58
0.5	3.25
0.05	2.82
0.24	2.03
0.05	0.88
0.08	1.39
0.1	0.1
0.1	1.1
0.06	1.39
0.05	1.24
0.08	1.37
Maximum 0.6	Maximum 116
Is there a significant	
	ES

NH3	
Monitoring	
Well 3	
Down	
Gradient	
Data	
79.3	
56.4	
72	
81.2	
82.8	
5.17	
59.6	
62.9	
92.7	
76.7	
74.9	
73.6	
8.67	
74.6	
141	
61.8	
62.3	
Maximum 141	
Is there a significant YES	

Parameter	NH3
Monitoring	Monitoring
Well	Well
1	4
Up	Down
Gradient	Gradient
Data	Data
0.1	10.7
0.1	8.4
0.1	12.1
0.1	10.9
0.05	15.5
0.18	32.6
0.6	11.7
0.5	11.5
0.05	13.9
0.24	11.4
0.05	10.2
0.08	7.45
0.1	0.67
0.1	5.5
0.06	7.12
0.05	7.32
0.08	7.82
Maximum	Maximum
0.6	
Is there a significant	
Y	ES

Tyson Foods, Inc. - Glen Allen, (VA0004031) Chloride (mg/l)

Parameter	Chloride
Monitoring	Monitoring
Well	Well
1	2
Up	Down
Gradient	Gradient
Data	Data
4	53
3	52
2	47
2	43
2.7	59.6
2.6	49.6
3	47
2	45
4	41
2	36
5	39
5	39
2	38
1	38
8	38
3	38
6	33
Maximum	Maximum
8	59.6
Is there a significant	
YES	

Parameter	Chloride
Monitoring	Monitoring
Well	Well
1	3
Up	Down
Gradient	Gradient
Data	Data
4	51
3	47
2	42
2	46
2.7	67.9
2.6	54.6
3	68
2	63
4	78
2	81
5	69
5	78
2	19
1	66
8	54
3	67
6	73
Maximum	Maximum
8	81
Is there a significant	
YES	

Parameter	Chloride
Monitoring	Monitoring
Well	Well
1	4
Up	Down
Gradient	Gradient
Data	Data
4	15
3	9
2	10
2	9
2.7	23.4
2.6	17.4
3	17
2	22
4	21
2	123
5	26
5	20
2	20
1	19
8	29
3	20
6	20
Maximum	Maximum
8	123
Is there a	-
YES	

Tyson Foods, Inc. - Glen Allen, (VA0004031) Nitrite (mg/l)

Parameter	Nitrite	
Monitoring	Monitoring	
Well	Well	
1	2	
Up	Down	
Gradient	Gradient	
Data	Data	
0.01	0.01	
0.01	0.01	
0.01	0.01	
0.01	0.01	
0.05	0.05	
0.01	0.01	
0.11	0.02	
0.02	0.02	
0.07	0.02	
0.02	0.02	
0.05	0.34	
0.14	0.03	
0.02	0.02	
0.02	0.02	
0.02	0.02	
0.02	0.02	
0.02	0.02	
Maximum		
-	0.14 0.34	
Is there a significant YES		

Parameter	Nitrite
Monitoring	Monitoring
Well	Well
weii 1	3
Up	Down
Gradient	Gradient
Data	Data
0.01	0.01
0.01	0.01
0.01	0.01
0.01	0.01
0.05	0.05
0.01	0.01
0.11	0.03
0.02	0.02
0.07	0.03
0.02	0.02
0.05	0.02
0.14	0.02
0.02	0.02
0.02	0.02
0.02	0.02
0.02	0.02
0.02	0.02
Maximum	
0.1	The second secon
Is there a significant	
No	

Parameter	Nitrite
Monitoring	Monitoring
Well	Well
1	4
Up	Down
Gradient	Gradient
Data	Data
0.01	0.01
0.01	0.01
0.01	0.03
0.01	0.01
0.05	0.05
0.01	0.01
0.11	0.05
0.02	0.02
0.07	0.02
0.02	0.03
0.05	0.02
0.14	0.02
0.02	0.02
0.02	0.02
0.02	0.02
0.02	0.02
0.02	0.02
Maximum	
0.1	
Is there a significant No	

Tyson Foods, Inc. - Glen Allen, (VA0004031) Sulfate (mg/l)

Parameter	Sulfate
Monitoring	Monitoring
Well	Well
1	2
Up	Down
Gradient	Gradient
Data	Data
5	5
5	6
5	6
5	9
0.6	14.5
173	21.2
5	28
3	30
5	34
6	36
3	36
121	34
4	34
5	34
18	34
3.7	41.1
3.34	29.7
Maximum 17	
Is there a significant	
No	

Parameter	Sulfate
Monitoring	Monitoring
Well	Well
1	3
Up	Down
Gradient	Gradient
Data	Data
5	5
5	5
5	5
5	5
0.6	1.5
173	20
5	8
3	28
5	7
6	7
3	3 2
121	3
4	22
5 18	3
3.7	5.8
3.7	7.26
3.54	7.20
Maximum	
17	
Is there a significant	
No	

Parameter	Sulfate
Monitoring	Monitoring
Well	Well
1	4
Up	Down
Gradient	Gradient
Data	Data
5	5
5	5
5	5
5	5
0.6	9.7
173	9.7
5	5
3	6
5	15
6	8
3	3
121	33
4	8
5	21
18	3
3.7	4.4
3.34	1
Maximum 17	
Is there a significant	
No	

Tyson Foods, Inc. - Glen Allen, (VA0004031)

TKN (mg/l)

Parameter	TKN
Monitoring	Monitoring
Well	Well
1	2
Up	Down
Gradient	Gradient
Data	Data
0.3	1.6
0.5	1.8
0.5	2.2
0.2	1.7
0.67	1.9
0.5	2.2
0.5	2.1
0.5	1.5
0.5	1.7
0.5	1.8
0.5	0.6
0.5	2.2
0.5	1.1
0.5	1.2
0.5	1.6
0.5	4
0.5	1.4
24	Maximum
Maximum 0.67	Maximum 4
Is there a significant	
YES	

Parameter	TKN
Monitoring	Monitoring
Well	Well
1	3
Up	Down
Gradient	Gradient
Data	Data
0.3	85.1
0.5	66.9
0.5	83.7
0.2	94.7
0.67	71.5
0.5	72.1
0.5	73.8
0.5	86.5
0.5	83
0.5	82.4
0.5	70
0.5	80.4
0.5	82.1
0.5	99.2
0.5	105
0.5	94.6
0.5	63.8
Maximum	Maximum
0.67	105
Is there a significant YES	

Parameter	TKN
Monitoring	Monitoring
Well	Well
weii 1	4
Up	Down
Gradient	Gradient
Data	Data
0.3	11.8
0.5	11.3 14.9
0.5 0.2	12.3
0.2	11.6
0.67	11.5
0.5	10.1
0.5	10.1
0.5	11.4
0.5	10.8
0.5	10.6
0.5	8.3
0.5	8.7
0.5	7.7
0.5	11.4
0.5	10.1
0.5	5.6
0.5	5.0
Maximum	Maximum
0.67	14.9
Is there a significant YES	

Tyson Foods, Inc. - Glen Allen, (VA0004031) Sodium (mg/l)

Parameter	Sodium
Monitoring	Monitoring
Well	Well
1	2
Up	Down
Gradient	Gradient
Data	Data
3.58	51.76
3.5	49.8
2.3	50.18
4.86	46.7
4	47
3.9	47
26	2
3	46
3	49
4	47
5	44
4	42
4	44
5	42
5	39
3.9	42.1
4.5	40.1
Maximum	
2	26 51.76
Is there a significant YES	

Parameter	Sodium
Monitoring	Monitoring
Well	Well
1	3
Up	Down
Gradient	Gradient
Data	Data
3.58	66.1
3.5	60.5
2.3	61.7
4.86	64.28
4	65
3.9	64
26	24
3	63
3	70
4	82
5	73
4	73
4	70
5	70
5	68
3.9	76.6
4.5	75.8
1	
Maximum	
	26 8
Is there	a significant
	YES

Parameter	Sodium
Monitoring	Monitoring
Well	Well
1	4
Up	Down
Gradient	Gradient
Data	Data
3.58	41.42
3.5	34.8
2.3	40.04
4.86	40.84
4	40
3.9	34
26	33
3	33
3	35
4	38
5	37
4	34
4	39
5	35
5	35
3.9	37.9
4.5	35.5
Maximum	
2	
Is there a	a significant YES

DEPARTMENT OF ENVIRONMENTAL QUALITY RECEIPTS TRANSMITTAL LOG COPIES RECEIPTS

Piedmont Regional Office

Page	of	
age	 ٠.	-

OIVISION	COMPANY NAME		<u> </u>	PURPOSE	CHECK NUMBER	AMOUNT
PRO	Nestle Purina Petcare Co	T	ank Registration		40002677	\$50.00
				In a second seco		
						1
	· ·			1		ΦEQ.00
					Total	\$50.00
D.C. Nu	ımber			Deposit Date		
TRANS	COST	FUND	PROG/SUB	OBJ/SRC	PROJ	TOTAL

Received By: ____June Simba

Date:

11/9/2010

COMMONWEALTH of VIRGINIA

STATE WATER CONTROL BOARD

Richard N. Burton Executive Director

4900 Cox Road

Gerard Seeley, Jr. Regional Director

Please reply to: Piedmont Regional Office P. O. Box 11143

Richmond, Virginia 23230 (804) 527-5020

January 9, 1992

Mr. John H. Reid
President
Reid Engineering Company. Inc.
1211 Caroline Street
Fredericksburg. Virginia 22401

RE: Tyson Foods, Inc., Glen Allen, Virginia Ground Water Remediation Plan

Dear Mr. Reid:

The staff of the State Water Control Board has reviewed the supplement dated October 21, 1991 to the ground water remediation plan for Tyson Foods, Glen Allen. The proposed abatement procedures are technically adequate and the plan is approved subject to the following conditions:

- 1. Please confirm the pumping schedule for the recovery wells. The January 14, 1991 plan indicated that pumping was to be continuous at a rate of approximately 24 gallons per minute (2 the recovery wells are to be pumped 24 hours per day, 7 days per week.
- 2. All monitoring reports are to be submitted by the tenth of the month following the monitoring period.
- An annual status report is required in January 1993 and yearly thereafter, if necessary. A completion report is also required.
- 4. Regarding Appendix 3 -- Ground Water Remediation Plan Implementation Schedule, the monitoring following abatement must be done at least monthly for a period of 6 months. The perpetual monitoring, if needed, must be done on a quarterly basis.
- 5. The ground water monitoring program approved in March 1990 requires quarterly monitoring for a more comprehensive list of constituents than the indicator parameters cited in the October 21 submittal. The quarterly monitoring required by the March 1990 approval must continue. That monitoring will

Reid Engineering Company, Inc.

703-371-8500 703-786-2733 FAX 703-371-8576

Consulting Environmental Engineers
Industrial Wastewater Treatment Specialists

1211 CAROLINE STREET, FREDERICKSBURG, VIRGINIA 22401

October 21, 1991

Mr. Ray Jenkins, Jr.
Environmental Engineer Senior
Piedmont Regional Office
State Water Control Board
Commonwealth of Virginia
4900 Cox Road
Innsbrook Corporate Center
P. O. Box 11143
Richmond, Virginia 23230

SUBJECT:

TYSON FOODS, INC., GLEN ALLEN, VIRGINIA

GROUNDWATER REMEDIATION PLAN

Dear Ray:

As you requested in our meeting on September 25, 1991 concerning the proposed Tyson Foods, Glen Allen, Virginia groundwater remediation plan, this letter and attached groundwater contour map, aquifer analysis, and implementation schedule are submitted to the State Water Control Board to provide the additional information that you requested during our meeting.

As requested by Dr. Sinha, a groundwater contour map has been prepared and is attached in Appendix #1. This groundwater contour map clearly indicates a south to southeasterly flow of groundwater under the existing lagoons. This groundwater contour map also indicates that, at present, the unnamed tributary stream at the south end of the Glen Allen processing plant site is the present final discharge point for groundwater flow under the existing lagoons. The proposed groundwater remediation plan will call for the installation of twelve groundwater recovery wells across the south end of the new treatment plant site. Proper operation of this groundwater recovery-remediation system will result in elimination of contaminated groundwater flow into the unnamed tributary stream.

Mr. Ray Jenkins, Jr. Virginia State Water Control Board October 21, 1991 Page 3

- Initial groundwater collection and pumping phase prior to elimination of operation of existing unlined waste treatment lagoons.
- Groundwater remediation phase after new treatment system improvements are operational and further operation of existing unlined waste treatment lagoons is eliminated.
- Post remediation phase with reduced groundwater monitoring schedule.
- 4. Perpetual monitoring phase with periodic groundwater monitoring.

As agreed in our meeting, the following parameters will be tested as indicator pollutants in the groundwater samples taken from MW #1, 2, 3 & 4 during all phases of the remediation plan:

Ammonia TKN TDS Specific Conductivity pH Zinc

One composite sample of the combined pumped groundwater flow will also be obtained from the proposed new groundwater collection manhole for testing.

Reid Engineering Company will be submitting a Lagoon Closure Plan for the Glen Allen site to the State Water Control Board by mid December. As you noted in our meeting, the requirement for a Perpetual Monitoring Phase at the end of the remediation work will depend upon the closure method proposed by Tyson Foods, Inc. in the Lagoon Closure Plan.

As noted by Mike Motsinger, assistant processing plant manager at Glen Allen, Tyson Foods desires to obtain expedited approval of the proposed groundwater remediation plan from the Virginia State Water Control Board so that they can proceed with the installation and operation of the groundwater remediation recovery wells to improve groundwater quality as rapidly as possible. Tyson Foods desires to eliminate the seepage of contaminants from the existing

	EVENT	DATE	TESTING SCHEDULE
٠ ٦	Initial groundwater collection phase prior to elimination of operation of unlined treatment lagoons	Jan. 1, 1992	1/3 months
. 2	Complete construction of waste-water treatment system improve-ments and eliminate operation of unlined treatment lagoons	Oct. 1, 1992	1 test by Jan. 1, 1993
n.	Groundwater Remediation Phase	Commence Jan. 1, 1993	1/month
4	Groundwater Remediation Phase by achieving groundwater equal to quality of upgradient MW #1	Jan. 1, 1994	1/month
5.	Post remediation phase to confirm completion of remediation plan	Jan. 1, 1995	6 tests over 12 month period
9	Perpetual monitoring phase	No Completion Date	1/12 months

Permit No.: VA0004031 Fact Sheet Attachments

ATTACHMENT I

• 4/9/92 Lagoon Closure Plan

LAGOON CLOSURE PLAN

FOR

TYSON FOODS, INC. POULTRY PROCESSING PLANT

Glen Allen, VA

I. <u>INTRODUCTION</u>

This report presents a proposed closure plan for three (3) wastewater treatment lagoons at the Tyson Foods, Inc. Poultry Processing Plant in Glen Allen, VA. The closure plan and subsequent closure of the lagoons have been mandated by the Virginia Water Control Board. This report includes:

- * sit'e description,
- * description of the proposed lagoon closure procedure,
- * post-closure maintenance plan,
- * proposed lagoon closure schedule.

II. DESCRIPTION OF SITE & EXISTING LAGOONS

The Tyson Foods, Inc. Poultry Processing Plant is located approximately 18 miles north west of Richmond, VA on Highway The plant was purchased by Holly Farms in 1963 for the processing of poultry products. The three (3) wastewater treatment lagoons to be closed were constructed in 1968 east of the plant facility to treat wastewater generated in the processing operation. The lagoons include one anaerobic lagoon (Lagoon No. 1) and two (2) unaerated lagoons for storage of waste activated sludge (Lagoon No. 3 and No. 4). The site is shown in Appendix I - Topographic Map of Lagoon The three (3) lagoons were constructed using on-site soils on the bottom and side slopes. At the time of construction, these soils were not tested for compaction or permeability. The effectiveness of these soils in preventing leakage is, therefore, questionable. Groundwater monitoring data gathered by Tyson Foods, Inc. in 1990 and 1991, indicates concentrations of certain pollutants to be elevated above background groundwater quality levels. Use of these lagoons will be discontinued after proposed improvements to the wastewater treatment system are completed in late 1992. system of groundwater collection wells and well pumps will also be installed in 1992 to achieve groundwater remediation to background levels.

Sludge thickness measurements and sampling have also been performed in each lagoon. As shown in Appendix II, Lagoon

- 6. Continue to monitor the quality of groundwater collected in the recovery wells, by analyzing on a quarterly frequency, samples pumped from the groundwater remediation recovery well system until groundwater pollutant levels are either reduced to background levels or to relatively stable levels which do not cause groundwater quality to be at risk.
- 7. Continue to monitor the levels of accumulated sludge in each lagoon to observe sludge volume reduction from endogenous respiration accomplished by dosage of Byo-Gon activator.

IV. POST CLOSURE MAINTENANCE PLAN

This proposed "materials in place" lagoon closure plan is not a "clean close" grade over plan but is essentially a long term lagoon management plan. This lagoon closure or management plan is especially suitable when accomplished simultaneously with the proposed Groundwater Remediation Plan in which groundwater will be collected, tested and recycled to the Tyson Foods, Glen Allen treatment plant for ultimate disposal.

This lagoon closure plan is proposed based on the assumption that discontinuing operation of these lagoons combined with lagoon solids volume reduction and lagoon supernatant disposal will eliminate further potential seepage of pollutants into the groundwater. This closure goal will be confirmed by ongoing groundwater sampling and testing during the Groundwater Remediation Phase coupled with the backup protection of the groundwater collection, pumping, treatment, and disposal plan.

Topographic Map of Lagoon Closure Area	
Lagoon Sludge Accumulation Measurements	
	•
•	
Cross Sections of Existing Lagoons	
Report of Laboratory Analysis	

```
Facility = Tyson Foods, Inc.-Glen Allen
Chemical = Copper (w/ Clean Metals Sampling)
Chronic averaging period = 4
WLAa = 23
WLAc = 14
WLAc = 14
# samples/mo. = 1
# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 1

Expected Value = 5.8

Variance = 12.1104

C.V. = 0.6

97th percentile daily values = 14.1138

97th percentile 4 day average = 9.64998

97th percentile 30 day average = 6.99510

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

No Limit is required for this material

The data are:

Facility = Tyson Foods, Inc.-Glen Allen
Chemical = Nickel (w/ Clean Metals Sampling)
Chronic averaging period = 4
WLAa = 290 / 4/
WLAc = 32 / 4/
Q.L. = 1
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = 2.5

Variance = 2.25

C.V. = 0.6

97th percentile daily values = 6.08354

97th percentile 4 day average = 4.15947

97th percentile 30 day average = 3.01513

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

No Limit is required for this material

The data are:

2.5 13/2 L Duta taken from Albion Environmental, College Station TX.

- Clean Metals Study wing samples taken 7/12 & 7/13/99.

Tyson Foods (Richmond VA) Clean Metals Study Sampling Event # 1 (12-13 July) Narrative Report

Clean Field Sampling

Field sampling was conducted on 12-13 July 1999 by Dr. Paul Boothe (Aibion Environmental) with the assistance of Mr. Eric Whitehurst and Mr. D'Juan Spencer (Tyson Foods). All samples collected during this event are summarized in the attached data report. Total recoverable and dissolved copper (Cu) and nickel (Ni) concentrations were measured in all samples.

All field sampling was performed using clean sampling techniques in accordance with the U.S. Environmental Protection Agency method 1669. New, non-powdered vinyl gloves were worn at each sampling point by any person touching any of the sampling equipment. All equipment in contact with the sample (i.e. sample bottles, pump tubing and cartridge filters) was rigorously acid pre-cleaned under clean conditions and certified to be analyte-free down to the low method detection limits (MDL) achieved in this study. All equipment was sealed in double plastic bags for shipment to the field. Sample bottles were kept doubled bagged at all times except when actually taking samples.

Prior to sampling at each station, the site was prepared by covering the work area with a new plastic tarp. All sample handling was done within a plastic shrouded enclosure. A new, pre-cleaned tubing set was used for each sampling episode. The tubing was connected to a pre-cleaned piece of pvc pipe which was used to position the inlet end of the sample tubing in the effluent being sampled. Both total recoverable and dissolved field blanks were taken at the effluent sampling site prior to the start of sampling. Field duplicates for both total recoverable and dissolved effluent samples were taken. In addition, a single total recoverable grab of freshwater coming into the plant site (water house) was collected.

The 24 hour total recoverable composite effluent sample was collected using the same refrigerated ISCO sampler installed at the site and used to collect routine effluent compliance monitoring samples. A new, pre-cleaned tubing set (provided by Albion) was installed on the sampler for this composite sampling event. The sampler was set to collect 60 ml effluent samples every 30 minutes. The sampler worked nominally for this composite sampling event. As required by EPA method 1669, a composite dissolved effluent sample was obtained by collecting three separate dissolved grabs over the 24 hour compositing period. A new, pre-cleaned tubing set and 0.45 um cartridge filter was used for real-time filtration during each dissolved grab sampling episode. The three dissolved grabs were preserved and composited (equal aliquots from each of three grabs) in Albion's laboratory under clean conditions to produce single dissolved metals composite sample for analysis.

Freshwater entering the plant site was sampled at the water house. Sampling was done from a metal faucet tap on the main freshwater supply line coming into the plant. To minimize the chance for contamination and to obtain a representative sample, the valve was opened and allowed to purge for several minutes prior to taking the sample.

All samples collected were shipped on ice (< 4.0 deg C.) to Albion's facility by overnight delivery. Samples were preserved and composited (as described above) under clean conditions upon receipt at Albion.

20 August 1999

Tyson Foods (Richmond VA) Clean Metals Study Final Trace Element Data for Sampling Event # 1 (Collected 12-13 July 1999) (All concentrations in ug/L= ppb)

Sample No	Start Date/ Time	End Date/Time	Location	Sample Type	Processing	Matrix	Anal. Batch	Method	3	Ž	Comments
		+					and the second of the second o			1	
Field Metals	s Samples										
8-824	1	7/13/99 1024	Outfall 001	24 hr. comp.	Total Rec.	Effluent	8/11/99	EPA 1638	2.7		
B-831	7/12/99 1230		Outfall 001	Grab#1	Diss.	Effluent	8/11/99	EPA 1638	5.8	2.5	Gravimetric composite
B-836	7/12/99 2033		Outfall 001	Grab#2	Diss.	Effluent	8/11/99	EPA 1638			of equal aliquots of 3
B-830	7/13/99 0842		Outfall 001	Grab#3	Diss.	Effluent	8/11/99	EPA 1638			separate dissolved grabs
B-820	7/12/99 1610		Water House	Drinking HOH	Total Rec.	Drink. HOH	8/11/99	EPA 1638	15.6	0.30	
Field Quali	Field Quality Assurance	(QA) Samples	3 S								
Equipment Blanks	lanks										
B-814			Albion	Bottle Blank	Diss.	MIO	66/9/	EPA 1638	< 0.15	< 0.3	
B-816	The same of the sa		Albion	Sampler Blank	Diss.	MIO	7/8/99	EPA 1638	< 0.15	< 0.3	
				9)				
Field Blanks											
B-818	7/12/99 0926		Outfall 001	Grab F-BLK	Total Rec.	MIO	8/11/99	EPA 1638	< 0.15	< 0.3	
B-828	7/12/99 1226		Outfall 001	Grab F-BLK	Diss.	ΜIO	8/11/99	EPA 1638	< 0.15	< 0.3	
Field Duplicates	ites										
B-824	7/12/99 1024	7/13/99 1024	Outfall 001	24 hr. comp.	Total Rec.	Effluent	8/11/99	EPA 1638	5.7	1.8	
B-825	7/12/99 1024	7/13/99 1024	Outfall 001	24 hr. FDUP	Total Rec.	Effluent	8/11/99	EPA 1638	5.8	2.1	
Relative percer	Relative percent difference (RPD								1.7	16.3	
	00001		Outfall 001	Crab # 4	Dice	Effluent	8/11/99	FPA 1638	8 22	2.5	Gravimetric composite
B-831	1112/39 1630		Outfall 001	Grab # 2	Diss	Effluent	8/11/99	EPA 1638		i	of equal aliquots of 3
B-839	7/13/99 0842		Outfall 001	Grab #3	Diss.	Effluent	8/11/99	EPA 1638			separate dissolved grabs
									,	i	
B-832	7/12/99 1231		Outfall 001	Grab # 1 FDUP	Diss.	Effluent	8/11/99	EPA 1638	ກຸ	7.5	Gravimente composite
B-836	7/12/99 2035		Outfall 001	Grab # 2 FDUP	Diss.	Effluent	8/11/99	EPA 1638			of equal aliquots of 3
B-840	7/13/99 0846		Outfall 001	Grab # 3 FDUP	Diss.	Effluent	8/11/99	EPA 1638			separate dissolved grabs
RPD									1.6	2.2	

APPROVED: THE PAPER

Permit No.: VA0004031 Fact Sheet Attachments

ATTACHMENT K

Public Notice

AUTHORIZATION FOR PUBLIC NOTICE BILLING

TO

VPDES PERMIT APPLICANT

I hereby authorize the Department of Environmental Quality to have the cost of publishing a public notice billed to the Agent/Department shown below. The public notice will be published once a week for two consecutive weeks in the THE RICHMOND TIMES DISPATCH.

Authorizing Agent:_

Signature

Applicant's Address:

13264 Mountain Road Glen Allen, Virginia 23059

Telephone Number

(804) 798-8357, ext 305

Permit No. VA0004031-Reissuance Attn: Clinton T. Shettle

Permit No.: VA0004031 Fact Sheet Attachments

ATTACHMENT L

- Excerpts from EPA's web site on <u>Effluent Limitations Guidelines and New Source Performance Standards for the Meat and Poultry Products Point Source Category</u>, Sept. 8, 2004.
- Excerpts from EPA's web site on 40 CFR Part 136.3

• Independent renderers of meat and poultry products that use greater than 10 million pounds per year of raw material;

Poultry first processors (slaughterhouses) that slaughter more than 100 million pounds

per year; and

• Poultry further processors that generate more than 7 million pounds per year of finished products (examples: ready-to-cook chicken cutlets or ground turkey).

The final rule also applies to direct discharges of wastewater from *new* poultry processors at lower production thresholds. Specifically, the final rule applies to new

• Poultry first processors (slaughterhouses) that slaughter less than or equal to 100 million pounds per year; and

Poultry further processors that generate less than or equal to 7 million pounds per year of

finished products.

What are the costs and pollutant reductions for the new requirements?

The regulation revises the existing effluent guidelines for the meat industry by adding ammonia and total nitrogen limits for meat slaughterhouses, and total nitrogen limits for meat further processors and independent renderers. For poultry slaughterhouses and further processors, the rule establishes limits for conventional pollutants, ammonia, and total nitrogen.

EPA estimates reductions in the discharge of total nitrogen of about 27 million pounds per year and reductions of conventional pollutants (e.g., BOD, total suspended solids, oil and grease) of about 4 million pounds per year. EPA estimates water quality benefits of about \$2.6 million, primarily from increased recreational opportunities, such as swimming and fishing. There are likely to be other ecological benefits, although these are harder to quantify. EPA estimates compliance costs of \$58 million per year.

How to Get Additional Information

For more information, please call Samantha Lewis at (202) 566-1058, or send an email to lewis.samantha@epa.gov. You can also learn more about this final rule by visiting EPA's Internet web site at http://www.epa.gov/guide/mpp.

DATES: This regulation shall become effective October 8, 2004. The Director of the Federal Register approves the incorporation by reference on October 8, 2004, of certain publications listed in this rule in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. For judicial review purposes, this final rule is promulgated as of 1:00 p.m. (Eastern time) on September 22, 2004, as provided in 40 CFR 23.2.

ADDRESSES: The docket for today's final rule is available for public inspection at the Water Docket in the EPA Docket Center, (EPA/DC) EPA West, Room B102, 1301 Constitution Ave., NW., Washington, DC.

FOR FURTHER INFORMATION CONTACT: For additional technical information contact Samantha Lewis at (202) 566-1058. For additional economic information contact James Covington at (202) 566-1034.

SUPPLEMENTARY INFORMATION:

General Information

E. What Are the Compliance Dates for Today's Final Rule?

Each National Pollutant Discharge Elimination System (NPDES) permit must include all technology-based effluent limitations promulgated by EPA. Consequently, all reissued permits for existing direct dischargers must require compliance with today's limitations. Direct dischargers that are new sources must comply with applicable new source performance standards (NSPS) on the date the new sources begin discharging. For purposes of the revised NSPS being promulgated today, a source is a new source if it commences construction after October 8, 2004.

Today's rule does not revise the new source performance standards for wastewater discharges from small meat products facilities (i.e., those new meat facilities whose production is below the subcategory-specific production threshold) in Subparts A-I. Therefore, the respective new source dates for small facilities in Subparts A-I are not affected by today's final rule.

Table of Contents

- I. Definitions, Acronyms, and Abbreviations Used in This Document II. Under What Legal Authority Is This Final Rule Issued?
- III. What Is the Legislative Background of This Rule?
 - A. Clean Water Act
- B. Existing Clean Water Act requirements applicable to meat and poultry processors
- IV. How Was This Final Rule Developed?
 - A. February 2002 Proposed Rule
 - B. August 2003 Notice of Data Availability
 - C. Public Comments
 - D. Public Outreach

[[Page 54478]]

- V. How Is the Final Rule Different From the Proposed Rule and the Approaches Discussed in the NODA?
 - A. Definitions
 - B. Pollutants
 - C. Costs and Economic Impacts
 - D. Loadings
 - E. Environmental Assessment
 - F. Treatment Options
 - G. Limitations

- E. Executive Order 13132: Federalism
- F. Executive Order 13175: Consultation and Coordination With

Indian Tribal Governments

- G. Executive Order 13045: Protection of Children From Environmental Health and Safety Risks
- H. Executive Order 13211: Actions that Significantly Affect Energy Supply, Distribution, or Use
 - I. National Technology Transfer and Advancement Act
- J. Executive Order 12898: Federal Actions to Address

Environmental Justice in Minority Populations and Low-Income Populations

K. Congressional Review Act

I. Definitions, Acronyms, and Abbreviations Used in This Document

 $\ensuremath{\mathtt{BPT--Best}}$ practicable control technology currently available, as defined by section 304(b)(1) of the Act

BCT--Best conventional pollutant control technology, as defined by section $304(b)\,(4)$ of the Act

BAT--Best available technology economically achievable, as defined by section 304(b)(2)(B) of the Act

MPP--Meat and Poultry Products point source category

NODA--Notice of Data Availability (August 13, 2003; 68 FR 48472) Nonconventional Pollutants--Pollutants that have not been designated as either conventional pollutants or priority pollutants

NSPS--New Source Performance Standards

PSES--Pretreatment standards for existing sources of indirect discharges, under section 307(b) of the Act PSNS--Pretreatment standards for new sources of indirect discharges, under sections 307(b) and (c) of the Act

TDD--Technical Development Document for the Final Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Point Source Category (EPA-821-R-04-011)

VI. Applicability

A. To Whom Does This Rule Apply?

This regulation applies to meat facilities and poultry and small game facilities (referred to as ``poultry facilities'' for convenience) that discharge their wastewater directly into waters of the U.S. (e.g., stream, lake, ocean) and are required to obtain an NPDES permit. Facilities that send their wastewater to a publicly owned treatment works (POTW) are not subject to this final rule; they remain subject to 40 CFR 403 and their local limits (see sections VI.G and XII.A.2).

Facilities above certain production thresholds (see Table VI.H-1 for subcategory-specific production thresholds) who are involved in any of the following activities are subject to this rule:

- · Slaughtering (first processing) meat or poultry or both
- Further processing meat or poultry or both
- Rendering meat or poultry or both.

technology basis is equivalent to the technology basis upon which EPA is setting BAT. In selecting its technology basis for today's NSPS, EPA considered all of the factors specified in CWA section 306, including the cost of achieving effluent reductions. EPA has thoroughly reviewed the costs of such technologies and has concluded that such costs do not present a barrier to entry (see the Economic and Environmental Benefits Analysis in the rulemaking record). The Agency also considered energy requirements and other non-water quality environmental impacts for the new source technology basis and found no basis for any different standards from those selected for NSPS. Therefore, EPA concluded that the NSPS technology basis chosen constitutes the best available demonstrated control technology. For a discussion on the compliance date for new sources, see Section XII of today's final rule.

EPA decided not to establish BPT, BCT, or BAT limitations for small facilities in Subcategories K and L (poultry first and further processing, respectively) or to revise current limitations and standards for small facilities in Subcategories A-I (see Table VI.H-1). EPA is establishing new source performance standards for new small facilities in Subcategories K and L. EPA's bases for not promulgating revised limitations or standards for small facilities are explained in the following sections. Finally, EPA decided not to establish pretreatment standards for all existing and new indirect dischargers (PSES and PSNS) for the reasons discussed in the NODA (68 FR 48477; August 13, 2003) and in Section VI.G of today's rule.

List of Subjects in 40 CFR Part 432

Environmental protection, incorporation by reference, meat and meat products, poultry and poultry products, waste treatment and disposal, water pollution control.

Dated: February 26, 2004. Michael O. Leavitt, Administrator.

• For the reasons set forth in this preamble, 40 CFR part 432 is revised as follows:

PART 432--MEAT AND POULTRY PRODUCTS POINT SOURCE CATEGORY

Sec

432.1 General applicability.

432.2 General definitions.

432.3 General limitation or standard for pH.

432.5 Incorporation by reference.

Subpart K--Poultry First Processing

432.110 Applicability.

432.111 Special definitions.

432.112 Effluent limitations attainable by the application of the best practicable control technology currently available (BPT).

432.113 Effluent limitations attainable by the application of the best available technology economically achievable (BAT).

432.114 Pretreatment standards for existing sources (PSES).

432.115 New source performance standards (NSPS).

432.116 Pretreatment standards for new sources (PSNS).

432.117 Effluent limitations attainable by the application of the best control technology for conventional pollutants (BCT).

Authority: 33 U.S.C. 1311, 1314, 1316, 1317, 1318, 1342 and 1361.

subsequently processes carcasses into cured, smoked, canned or other prepared meat products.

- (i) Poultry means products derived from the slaughter and processing of broilers, other young chickens, mature chickens, hens, turkeys, capons, geese, ducks, small game fowl such as quail or pheasants, and small game such as rabbits.
- (j) Raw material means the basic input materials to a renderer composed of animal and poultry trimmings, bones, blood, meat scraps, dead animals, feathers and related usable by-products.
- (k) Slaughterhouse means a facility that slaughters animals and has as its main product fresh meat as whole, half or quarter carcasses or small meat cuts.
- (1) The approved methods of analysis for the following six parameters are found in Table 1B in 40 CFR 136.3. The nitrate/nitrite part of total nitrogen may also be measured by EPA Method 300.0 (incorporated by reference, see Sec. 432.5).
 - (1) Ammonia (as N) means ammonia measured as nitrogen.
 - (2) BOD₅ means 5-day biochemical oxygen demand.
 - (3) O&G means total recoverable oil and grease.
- (4) O&G (as HEM) means total recoverable oil and grease measured as n-hexane extractable material.
- (5) Total Nitrogen means the total of nitrate/nitrite and total Kjeldahl nitrogen.
 - (6) TSS means total suspended solids.
- Sec. 432.3 General limitation or standard for pH.

Any discharge subject to BPT, BCT, or NSPS limitations or standards in this part must remain within the pH range of 6 to 9.

Sec. 432.5 Incorporation by reference.

- (a) The material listed in this section is incorporated by reference in the corresponding sections in this part, as noted. The Director of the Federal Register approves the incorporation by reference of this material in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This material is incorporated as it exists on the date of the approval, and notice of any change in this material will be published in the Federal Register. The material is available for purchase at the address in paragraph (b) of this section and is available for inspection at the Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC, or at the EPA Docket Center, 1301 Constitution Ave., NW., EPA West Room B-102, Washington, DC.
- (b) The following material is available for purchase from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. The toll-free telephone number is (800) 553-6847.
- (1) ``Method 300.0 Determination of Inorganic Anions by Ion Chromatography'' (Revision 2.1) found in ``Methods for the Determination of Inorganic Substances in Environmental Samples,'' EPA 600-R-93/100 (order number PB94-120821), August 1993, IBR approved for Sec. 432.2(1).
 - (2) [Reserved]

Any source that is a new source subject to this subpart must achieve the following performance standards:

(a) Facilities that slaughter no more than 100 million pounds per year (in units of LWK) must achieve the following performance standards:

Performance Standards [NSPS]

Regulated parameter	Maximum daily \1\	Maximum monthly avg.\1\
Ammonia (as N) BOD5. Fecal Coliform. O&G (as HEM). TSS.	8.0 26 (\2\) 14 30	4.0 16 (\3\) 8.0 20

- $\1\ mg/L (ppm).$
- \2\ Maximum of 400 MPN or CFU per 100 mL at any time.
- \3\ No maximum monthly average limitation.
- (b) Facilities that slaughter more than 100 million pounds per year (in units of LWK) must achieve the following performance standards:

Performance Standards [NSPS]

Regulated parameter	Maximum daily \1\	Maximum monthly avg.\1\
Ammonia (as N)	8.0 26	4.0
Fecal Coliform	(\2\)	(\3\)
O&G (as HEM)	14	8.0
TSS	30	20
Total Nitrogen	147	103

- $\1\ mg/L (ppm).$
- \2\ Maximum of 400 MPN or CFU per 100 mL at any time.
- \3\ No maximum monthly average limitation.

Sec. 432.116 Pretreatment standards for new sources (PSNS). [Reserved]

Sec. 432.117 Effluent limitations attainable by the application of the best control technology for conventional pollutants (BCT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the application of BCT: Limitations for BOD_5 , TSS, O&G (as HEM), and fecal coliform are the same as the corresponding limitation specified in Sec. 432.112.

Title 40: Protection of Environment

PART 136—GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS § 136.3 Identification of test procedures

Table IB_List of Approved Inorganic Test Procedures

mber or page)	Standard Methods [Edition(s)]	5520B [18th, 19th, 20th] \38\. 5520B [18th, 19th, 20th] \38\.		
Reference (method number or page)	EPA 1, 35	413.1	1664A \42\	
	Parameter, units and method	41. Oil and grease_Total recoverable, mg/L: Gravimetric (extraction) Oil and grease and non-polar material, mg/L: Hexane extractable material (HEM): n-Hexane extraction and	gravimetry. Silica gel treated HEM (SGT- HEM): Silica gel treatment and gravimetry.	

Table 1B Notes:

\1\ ``Methods for Chemical Analysis of Water and Wastes,'' Environmental Protection Agency, Environmental Monitoring Systems Laboratory_Cincinnati (EMSL-CI), EPA-600/4-79-020, Revised March

1983 and 1979 where applicable.

\35\ Precision and recovery statements for the atomic absorption direct aspiration and graphite furnace methods, and for the spectrophotometric SDDC method for arsenic are provided in Appendix D of this part titled, ``Precision and Recovery Statements for Methods for Measuring Metals''

Only use n-hexane extraction solvent when determining Hexane Extractable Material (analogous to EPA Method 1664A). \38\ Only use Trichlorotrifluorethane (1,1,2-trichloro-1,2,2-trifluoroethane; CFC-113) extraction solvent when determining Total Recoverable Oil and Grease (analogous to EPA Method 413.1)

\42\ Method 1664, Revision A ``n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Use of other extraction solvents is strictly prohibited.

Gravimetry'' EPA-821-R-98-002, February 1999. Available at NTIS, PB-121949, U.S. Department of Commerce, 5285 Port Extractable Material (SGT-HEM; Non-polar Material) by Extraction and

Royal, Springfield, Virginia 22161.

State "Transmittal Checklist" to Assist in Targeting Municipal and Industrial Individual NPDES Draft Permits for Review

Part I. State Draft Permit Submission Checklist

In accordance with the MOA established between the Commonwealth of Virginia and the United States Environmental Protection Agency, Region III, the Commonwealth submits the following draft National Pollutant Discharge Elimination System (NPDES) permit for Agency review and concurrence.

Facility Name:	Tyson Foods, Inc. – Glen Allen			
NPDES Permit Number:	VA0004031			
Permit Writer Name:	Clinton T. Shettle			
Date:	8/2/05			
Major[]	Minor [X] Industrial [X]	Muni	cipal []
I.A. Draft Permit Package S	ubmittal Includes:	Yes	No	N/A
1. Permit Application?		х		
Complete Draft Permit (for including boilerplate inform	r renewal or first time permit – entire permit, nation)?	×		
3. Copy of Public Notice?		x		
4. Complete Fact Sheet?		x		
5. A Priority Pollutant Screen	ning to determine parameters of concern?	x		
6. A Reasonable Potential a	nalysis showing calculated WQBELs?	x		
7. Dissolved Oxygen calcula	tions?		Х	
8. Whole Effluent Toxicity Te	est summary and analysis?	х		
9. Permit Rating Sheet for no	ew or modified industrial facilities?			Х
I.B. Permit/Facility Characte	eristics	Yes	No	N/A
1. Is this a new, or currently	unpermitted facility?		Х	
Are all permissible outfalls process water and storm authorized in the permit?	s (including combined sewer overflow points, non- water) from the facility properly identified and	×	in the state of th	
Does the fact sheet or pertreatment process?	ermit contain a description of the wastewater	×		

Part III. Signature Page

Based on a review of the data and other information submitted by the permit applicant, and the draft permit and other administrative records generated by the Department/Division and/or made available to the Department/Division, the information provided on this checklist is accurate and complete, to the best of my knowledge.

Name	Clinton T. Shettle	
Title	Environmental Specialist II	
Signature	Short Sheet	
Date	8/2/2005	

DEPARTMENT OF ENVIRONMENTAL QUALITY RECEIPTS TRANSMITTAL LOG COPIES RECEIPTS

Piedmont Regional Office

Fledifiont Regional Office			Page of	
MAISION	COMPANY NAME	PURPOSE	CHECK NUMBER	CHECK AMOUNT
PRO	Nestle Purina Petcare Co	Tank Registration	40002677	\$50.00
			Total	\$50.00
D.C. Nu	mber			
		PROG/SUB	PROJ	TOTAL
TRANS	COST	PROG/SUB	PROU	TOTAL
	¥	Received By:		

Date: